
Test-Driven Development
pfcongrez - Maarsen, the Netherlands

Derick Rethans - dr@ez.no
http://derickrethans.nl/talks.php



About Me

● Dutchman living in Norway
● eZ Systems A.S.
● eZ Components project lead
● PHP development
● mcrypt, input_filter, date/time support, unicode
● QA



Introduction

It's OK to write code that does not work



It's OK to write code that does not work



Introduction

About Testing



Web Application Testing
Testable Parts

Front-end
● Acceptance Tests and System Tests that run in the 

browser
● Testing of Web Services with Unit Tests
● Compatibility Testing for Browser/OS/etc. combinations
● Performance Testing
● Security Testing

Back-end
● Functional Testing of business logic with Unit Tests
● Reusable Components, but they often come with their 

own tests



Testing Methods

Unit Testing
Tests small parts of an application or library (units) for 
correctly working code. Tools: PHPUnit, SimpleTest
System Testing
The testing of a whole integrated system against the 
specified requirements. Tools: Selenium
Non-functional Testing
Testing for performance, load, stress, reliability, availability, 
security. Tools: ab, siege, httperf, chorizo



Test-Driven Development
a feature without a test is not a feature



Test-Driven Development

It is not just a method of testing 
software.



Test-Driven Development

It is a religion.

✡✝☪



Back In Time
Traditional Development Phases

Requirements Specification
Define what the software is supposed to do.
Design
Define how the software is supposed to be implemented.
Implementation
The implementation of the software itself.
Testing
The implemented software is tested.
Sometimes.



 



Tests are King

Tests drive the development
● Tests are written before the code
● There is no code without tests

Test Suites
● Contain tests that check whether the code does what it 

is supposed to do
● Also cover things that should fail



Into the Future
Test-Driven Development Phases

Requirements Specification
Define what the software is supposed to do.
Design
Define how the software is supposed to be implemented.
Implementation  Testing≡
The implemented software is tested.
The implementation of the software itself.



Test-Driven Development
eZ Components Development

Present the Idea
Write the Requirements Document
Design the Component
Implementation

● Write API stubs with parameter documentation and 
descriptions

● Write test cases
● Initial implementation
● Initial implementation review
● Updating implementation according to review
● Implementation review

Pre-release Testing



Test-Driven Development
Addressing Defects

Write Test Case
Write a test case to test the correct behavior of the method, 
and verify that the test case fails
Fix the Issue
Fix the implementation
Verify Fix with Test Case
Make sure that the test cases pass with the new 
implementation
Check Other Test Cases
Verify that the fix for this defect did not break any other test 
case



The Way of Testivus

● If you write code, write tests.
● Don’t get stuck on unit testing dogma.
● Embrace unit testing karma.
● Think of code and test as one.
● The test is more important than the unit.
● The best time to test is when the code is fresh.
● Tests not run waste away.
● An imperfect test today is better than a perfect test 

someday.
● An ugly test is better than no test.
● Sometimes, the test justifies the means.
● Only fools use no tools.
● Good tests fail.

http://www.artima.com/weblogs/viewpost.jsp?thread=203994



 



PHP Unit



PHPUnit
Unit Testing Framework for PHP



PHPUnit
Code Coverage: No Code Without Test



PHPUnit
Code Coverage: No Code Without Test

Green: Covered code.
Red: Not covered code.
Grey: Unreachable code.
White: No code.



PHPUnit
Code Coverage: How important?

< 100% Coverage  Not fully tested code≡
100% Coverage  Fully tested code≢

How much coverage should you aim for?
● It doesn't matter, just write some tests.
● How much rice do I need to cook?
● 100%, and no less!

http://www.developertesting.com/archives/month200705/200
70504-000425.html



phpUnderControl
Continuous integration with CruiseControl



Un-testable Problems

● Testing singletons more than one time
● System/Operating System dependent tests
● Private methods
● Code that depends on the state of an external 

resource
● Things that simply should never happen



Politics
resistance to change



Developers

Fear - more work to do
● Introduce TDD concepts gently
● Whenever a problem is found, make and retain a test 

case for futher use
● Start using TDD for new projects



Managers

Ignorance - too much time spent on testing
● Out of date with modern processes
● Belief that testing slows the schedule (only if you follow 

the ship-and-see process)
● You save time later, because you wouldn't have to re-

test or re-debug newly written additions or big fixes.



 



Case Studies



Case Studies

Microsoft Case Study
● TDD project has twice the code quality
● Writing tests requires 15% more time

IBM Case Study
● 40% fewer defects
● No impact on the team's productivity

John Deere / Ericsson Case Study
● TDD produces higher quality code
● Impact of 16% on the team's productivity



Case Studies
Developer Comments

● At first I didn't like that I need to write tests for my 
code, but now after using it for more than 10 months 
I can't program without it.

● Helps to come up with better APIs.
● It gives confidence that our software is working well at 

all times. Even after making major changes and/or 
changing software we are dependent on.

● Productivity increases - you might loose some when 
you make the initial tests, but you'll get it back later. 
The code covered by tests is 'insured' against future 
changes.

● It works well for libraries, not so well for GUI 
applications.

● Some things cannot be tested like server errors, unless 
you use mock-objects.



Questions

?



Resources

● http://homepage.mac.com/hey.you/lessons.html
● Testuvius: http://www.artima.com/weblogs/viewpost.jsp?

thread=203994

● PHP Unit: http://phpunit.de
● phpUnderControl: http://phpundercontrol.org
● Xdebug: http://xdebug.org
● These Slides: http://derickrethans.nl/talks.php

● PHP: http://www.php.net


